

Fig. 1. Molecular structure and numbering scheme.
each bonded to three carbonyls. The significantly longer $\mathrm{Os}-\mathrm{Os}$ bonds to $\mathrm{Os}(1)$ may serve to redress the resulting electron imbalance. The $\mathrm{Os}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds are respectively equal within experimental error, with means 1.89 (4) and 1.16 (4) \AA; refinement with the $\mathrm{C}-\mathrm{O}$ distances constrained to be equal yielded $1 \cdot 16$ (1) \AA. There are two short non-bonded Os \cdots C interactions, both associated with significant departures from linear $\mathrm{Os}-\mathrm{C}-\mathrm{O}$ units: $\mathrm{C}(8) \cdots \mathrm{Os}(2) 2.66$ (4), $\mathrm{C}(7) \cdots \mathrm{Os}(3) 2.89(4) \AA ; \mathrm{Os}(1)-\mathrm{C}(8)-\mathrm{O}(8) 166$ (3), $\mathrm{Os}(2)-\mathrm{C}(7)-\mathrm{O}(7) 171(4)^{\circ}$. The molecular structure (Fig. 1) is consistent with the Johnson (1976) model in which close-packed carbonyl groups adopt a polyhedral arrangement. The high density 13.83 g cm^{-3}, in contrast to $3.19 \mathrm{~g} \mathrm{~cm}^{-3}$ in $\mathrm{Os}_{6}(\mathrm{CO})_{18}$; Mason, Thomas \& Mingos, 1973] implies efficient packing of the molecules, which can be seen in Fig. 2.

Fig. 2. Stereoscopic view of the crystal packing down \mathbf{a}^{*}.
We are grateful to the Science Research Council for providing the diffractometer, to ICI for a Fellowship (to BER), and to Dr C. R. Eady for providing the crystals. Calculations were performed with the Cambridge University IBM 370/165 computer and programs written by BER and GMS; the figures were drawn with PLUTO written by Dr W. D. S. Motherwell.

References

Eady, C. R., Johnson, B. F. G. \& Lewis, J. (1972). J. Organomet. Chem. 37, C39-C40.
Eady, C. R., Johnson, B. F. G. \& Lewis, J. (1975). J. Chem. Soc. Dalton, pp. 2606-2611.
Eady, C. R., Johnson, B. F. G., Lewis, J., Reichert, B. E. \& Sheldrick, G. M. (1976). Chem. Commun. p. 271.
Johnson, B. F. G. (1976). Chem. Commun. pp. 211-213.
Mason, R., Thomas, K. M. \& Mingos, D. M. P. (1973). J. Amer. Chem. Soc. 95, 3802-3804.

Acta Cryst. (1977). B33, 175-177

Di- μ-cyclononaallyl-hexacarbonyldiosmium

By Bernhard E. Reichert and Gborge M. Sheldrick
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 23 July 1976; accepted 7 August 1976)

Abstract

C}_{24} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Os}_{2}\), monoclinic, $\quad P 2_{1} / c$, $a=7.174$ (4) , $\quad b=8.850$ (4),$\quad c=19.173$ (10) \AA, $\beta=103.11(4)^{\circ}, U=1185.6 \AA^{3}, Z=2, D_{x}=2.22 \mathrm{~g}$ cm^{-3}. The structure was solved by the heavy-atom method and refined to an R of 0.027 for 1145 independent diffractometer data. The centrosymmetric molecule contains two $\mathrm{Os}(\mathrm{CO})_{3}$ units, with each $\mathrm{Os} \sigma$ bonded to the central allyl C of a cyclononaallyl group π-bonded to the other Os.

Introduction. When $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ reacts with cyclonona-1,2-diene, the latter dimerizes and the product contains a di(cyclononaallyl) group π-bonded to an $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$ unit which retains an $\mathrm{Fe}-\mathrm{Fe}$ bond (Howell, Lewis, Matheson \& Russell, 1975). The same diene reacts with $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ to yield a product of similar empirical formula (with Fe replaced by Os; Bryan, Johnson \& Lewis, 1976), but the single-crystal X-ray determination reported here reveals a quite different structure.

Intensities were determined with an automated Stoe STADI-2 two-circle diffractometer, graphite-monochromated Mo $K a$ radiation, and a crystal 0.07×0.10 $\times 0.17 \mathrm{~mm}$ (layers $0-4 k l$). An inferior crystal mounted about [010] was used only for cell-constant determination, which was based on a least-squares fit to diffractometer ω angles for the 0 kl and $h 0 l$ zero-layer reflexions. Lp and numerical absorption corrections were applied ($\mu=103.4 \mathrm{~cm}^{-1}$); equivalent reflexions were averaged to give 1145 unique reflexions with $F>2 \sigma(F)$.

The Os coordinates were derived from the Patterson map and the C and O atoms located in difference syn-

Table 1. Atom coordinates $\left(\times 10^{4}\right)$ and isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$

	x	y	z	U
	x	y		
Os(1)	$316(1)$	2002	194	
$\mathrm{C}(1)$	$1505(19)$	$3428(11)$	$917(6)$	$31(2)$
$\mathrm{O}(1)$	$2253(14)$	$4329(8)$	$1317(5)$	$50(2)$
$\mathrm{C}(2)$	$-2089(21)$	$3002(11)$	$47(6)$	$34(2)$
$\mathrm{O}(2)$	$-3599(17)$	$3509(11)$	$-41(6)$	$66(3)$
$\mathrm{C}(3)$	$1315(19)$	$3018(10)$	$-529(5)$	$32(2)$
$\mathrm{O}(3)$	$1835(13)$	$3594(4)$	$-974(4)$	$47(2)$
$\mathrm{C}(4)$	$-950(18)$	$367(9)$	$-611(5)$	$22(2)$
$\mathrm{C}(5)$	$291(18)$	$-336(9)$	$-1033(5)$	$27(2)$
$\mathrm{C}(6)$	$-361(18)$	$-848(11)$	$-1814(5)$	$33(2)$
$\mathrm{C}(7)$	$-817(21)$	$509(11)$	$-2333(6)$	$39(3)$
$\mathrm{C}(8)$	$-295(22)$	$912(14)$	$-2547(7)$	$55(3)$
$\mathrm{C}(9)$	$-3761(21)$	$1647(13)$	$-1957(7)$	$52(3)$
$\mathrm{C}(10)$	$-5174(21)$	$718(12)$	$-1624(7)$	$47(3)$
$\mathrm{C}(11)$	$-4278(19)$	$-729(10)$	$-1260(6)$	$35(2)$
$\mathrm{C}(12)$	$-2781(18)$	$-334(10)$	$-582(5)$	$30(2)$

Table 2. Anisotropic temperature factors ($\AA^{2} \times 10^{3}$)

	The temperature factor exponent takes the form:$-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+\cdots+2 U_{12} h k a^{*} b^{*}\right)$					
	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\mathrm{Os}(1)$	27 (1)	24 (1)	30 (1)	0 (1)	4 (1)	1 (1)

Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{C}(1)-\mathrm{Os}(1)$	$1.92(1)$	$\mathrm{C}(7)-\mathrm{C}(6)$	$1.55(1)$
$\mathrm{C}(2)-\mathrm{Os}(1)$	$1.90(1)$	$\mathrm{C}(8)-\mathrm{C}(7)$	$1.54(2)$
$\mathrm{C}(3)-\mathrm{Os}(1)$	$1.92(1)$	$\mathrm{C}(9)-\mathrm{C}(8)$	$1.53(2)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.15(1)$	$\mathrm{C}(10)-\mathrm{C}(9)$	$1.55(2)$
$\mathrm{O}(2)-\mathrm{C}(2)$	$1.15(2)$	$\mathrm{C}(11)-\mathrm{C}(10)$	$1.53(2)$
$\mathrm{O}(3)-\mathrm{C}(3)$	$1.13(1)$	$\mathrm{C}(12)-\mathrm{C}(11)$	$1.53(2)$
$\mathrm{C}(4)-\mathrm{Os}(1)$	$2.16(1)$	$\mathrm{C}(4)-\mathrm{Os}\left(1^{\prime}\right)$	$2.25(1)$
$\mathrm{C}(5)-\mathrm{C}(4)$	$1.47(2)$	$\mathrm{C}(5)-\mathrm{Os}\left(1^{\prime}\right)$	$2.29(1)$
$\mathrm{C}(12)-\mathrm{C}(4)$	$1.46(2)$	$\mathrm{C}(12)-\mathrm{Os}\left(1^{\prime}\right)$	$2.29(1)$
$\mathrm{C}(6)-\mathrm{C}(5)$	$1.53(1)$	$\mathrm{Os}(1)-\mathrm{Os}\left(1^{\prime}\right)$	$3.629(3)$
$\mathrm{C}(2)-\mathrm{Os}(1)-\mathrm{C}(1)$	$92.3(5)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$111.9(8)$
$\mathrm{C}(3)-\mathrm{Os}(1)-\mathrm{C}(1)$	$92 \cdot 1(4)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$113.9(10)$
$\mathrm{C}(3)-\mathrm{Os}(1)-\mathrm{C}(2)$	$98.6(5)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$115.1(11)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{Os}(1)$	$175.8(9)$	$\mathrm{C}(10-\mathrm{C}(9)-\mathrm{C}(8)$	$118.1(10)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{Os}(1)$	$175.2(10)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$112.7(11)$
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{Os}(1)$	$177.1(10)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$109.8(8)$
$\mathrm{C}(12)-\mathrm{C}(4)-\mathrm{C}(5)$	$120.1(8)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(4)$	$121.9(9)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$125.1(10)$		

theses; no attempt was made to locate the H atoms. The structure was refined by full-matrix least squares with complex neutral-atom scattering factors and the weighting scheme $w=1 /\left[\sigma^{2}(F)+0 \cdot 00126\left|F_{o}\right|^{2}\right]$. The parameters included anisotropic temperature factors for Os only, interlayer scale factors, and an empirical extinction parameter x which refined to $0.00020(8) ; F_{c}$ is multiplied by $\left(1-0.0001 x F_{c}^{2} / \sin \theta\right)$. The constraint $U_{11}=\left(U_{22}+U_{33}\right) / 2$ was applied to reduce correlation involving the interlayer scale factors. The refinement converged to $R^{\prime}=\Sigma w^{1 / 2} \Delta / \Sigma w^{1 / 2} F_{o}=0.029$ and $R=0.027$. Final coordinates and thermal parameters are given in Tables 1 and 2, the resulting bond lengths and angles in Table 3.*

Discussion. The molecule (Fig. 1) possesses a crystallographic centre of symmetry. The Os...Os distance of 3.629 (3) \AA indicates negligible $\mathrm{Os}-\mathrm{Os}$ interaction. The allyl group dimensions are typical of π allylic systems (Gatehouse, Reichert \& West, 1974, and references therein), and the distance of $\mathrm{Os}(1)$ from C (4) (the central allyl carbon) of $2 \cdot 16$ (1) \AA is consistent with a σ bond (see e.g. Reichert \& Sheldrick, 1977). This structure is clearly a possible intermediate in the ligand dimerization reaction of the iron analogue.

We are grateful to Mr E. G. Bryan for providing the crystals, to ICI for financial support to BER, and to the Science Research Council for the diffractometer. The calculations were performed on the Cambridge University IBM $370 / 165$ computer with programs written by GMS. Fig. 1 was drawn with PLUTO written by Dr W. D. S. Motherwell.

[^0]

Fig. 1. The molecule of di- μ-cyclononaallyl-hexacarbonyldiosmium with unique atoms labelled.

References

Bryan, E. G., Johnson, B. F. G. \& Lewis, J. (1976). J. Organomet. Chem. In the press.
Gatehouse, B. M., Reichert, B. E. \& West, B. O. (1974). Acta Cryst. B30, 2451-2454.

Howell, J. A. S., Lewis, J., Matheson, T. W. \& Russell, D. R. (1975). J. Organomet. Chem. 99, C55-C58.

Reichert, B. E. \& Sheldrick, G. M. (1977). Acta Cryst. B33, 173-175.

Acta Cryst. (1977). B33, 177-179

20-Methyl-14 β,17 α-pregn-4-en-3-one

By W. S. Sheldrick
Gesellschaft für Biotechnologische Forschung mbH, Mascheroder Weg 1, D-3300 Braunschweig-Stöckheim, Germany (BRD)

(Received 2 August 1976; accepted 14 August 1976)
Abstract. $\quad \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}$, orthorhombic, $P 2_{1} 2_{1} 2_{1}$, on a Syntex $P 2_{1}$ diffractometer (Mo K $0.71069 \AA$). $a=7.950(2), \quad b=32.237(10), \quad c=7.281$ (1) \AA, $M_{r}=314 \cdot 5, Z=4, D_{x}=1 \cdot 12 \mathrm{~g} \mathrm{~cm}^{-3}$. The ring junction C / D is cis, while ring junctions A / B and B / C are both trans. Ring conformations are: $A \quad 1 \alpha, 2 \beta$ half chair; B, C chair; $D 14 \beta$ envelope.

Introduction. Cell dimensions were obtained from a least-squares fit to the settings of 15 reflexions ($\pm h k l$)

Intensity measurements were carried out in the $\theta-2 \theta^{\prime}$ mode $\left(3 \cdot 0 \leq 2 \theta \leq 50 \cdot 0^{\circ}\right)$ with graphite-monochromated Mo $K \alpha$ radiation, at scan speeds varying linearly between $2.93^{\circ} \mathrm{min}^{-1}$ (150 c.p.s. and below) and $19.53^{\circ} \mathrm{min}^{-1}$ (5000 c.p.s. and above). Scan and background times were equal. Lorentz and polarization but no absorption [$\mu($ Mo $K \alpha)=0.34$ cm^{-1}] corrections were applied. After application of the acceptance criterion $I \geq 1.5 \sigma(I), 1040$ unique

Table 1. A tom positional parameiers $\left(\times 10^{4}\right)$ and anisotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$

$$
T=\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{23} k l b^{*} c^{*}+2 U_{13} l h c^{*} a^{*}+2 U_{12} h k a^{*} b^{*}\right)\right] .
$$

	x	y	z	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
C(1)	-128(10)	2337 (2)	6717 (10)	62 (5)	48 (5)	66 (6)	1 (5)	3 (5)	-5 (5)
C(2)	761 (12)	2727 (3)	7566 (16)	73 (7)	58 (7)	145 (10)	33 (7)	-22(8)	-2(5)
C(3)	782 (10)	2699 (3)	9639 (17)	44 (6)	50 (6)	137 (11)	-18(8)	-8(7)	-7 (5)
C(3)	684 (8)	3010 (2)	589 (10)	103 (5)	70 (4)	166 (7)	-59 (5)	6 (6)	-9 (4)
C(4)	999 (10)	2289 (3)	387 (11)	74 (6)	99 (8)	42 (6)	-13 (6)	7 (5)	-30 (6)
C(5)	1052 (10)	1939 (3)	9390 (12)	46 (5)	59 (6)	56 (6)	-10(5)	6 (5)	-18(5)
C(6)	1563 (13)	1521 (3)	176 (10)	144 (9)	80 (6)	46 (6)	10 (5)	-44 (6)	-36 (7)
C(7)	160 (12)	1206 (2)	9918 (11)	93 (7)	53 (5)	58 (6)	14 (5)	-4 (6)	-20(5)
C(8)	-265 (10)	1158 (2)	7886 (9)	48 (5)	48 (5)	35 (5)	17 (4)	-7(4)	3 (4)
C(9)	-669 (8)	1574 (2)	7008 (9)	41 (5)	41 (4)	27 (4)	-1 (4)	7 (4)	1 (4)
C(10)	665 (9)	1926 (2)	7350 (10)	55 (5)	36 (5)	40 (5)	7 (4)	11 (5)	0 (4)
C(11)	-1061 (10)	1500 (2)	4965 (9)	53 (5)	48 (5)	41 (5)	11 (4)	5 (5)	-12(4)
$\mathrm{C}(12)$	-2539 (10)	1210 (2)	4716 (9)	55 (5)	57 (5)	31 (5)	4 (4)	-2 (4)	-3(4)
C(13)	-2274 (8)	774 (2)	5620 (10)	31 (4)	43 (5)	42 (5)	-10(4)	10 (4)	6 (4)
C(14)	-1679(10)	844 (2)	7618 (10)	69 (5)	23 (4)	40(5)	9 (4)	-12(5)	-1 (4)
C(15)	-3317(10)	929 (2)	8691 (10)	55 (5)	82 (6)	31 (5)	-4 (4)	27 (5)	-23(5)
C(16)	-4726 (9)	727 (3)	7563 (12)	45 (5)	80 (6)	73 (6)	-5 (6)	-2 (5)	-8(5)
C(17)	-3901 (8)	528 (2)	5904 (10)	39 (4)	39 (4)	48 (5)	-3 (4)	9 (4)	0 (4)
C(18)	-1014(12)	529 (3)	4503 (14)	55 (6)	70 (6)	55 (6)	1 (6)	1 (6)	-10 (5)
C(19)	2313 (13)	1841 (3)	6288 (11)	57 (6)	81 (7)	53 (6)	1 (6)	10 (6)	-4 (5)
C(20)	-5029 (9)	420 (3)	4255 (11)	40 (5)	65 (6)	45 (6)	-5 (5)	9 (5)	-7 (5)
C(21)	-6260(11)	70 (3)	4794 (16)	59 (7)	57 (6)	104 (10)	7 (6)	-33(7)	-20(5)
C(22)	-6030 (12)	772 (3)	3349 (14)	68 (7)	81 (7)	71 (7)	14 (6)	-21 (6)	-12 (6)

[^0]: *A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32009 (8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

